第六十九章:周海的欣赏
,是否都有A(α+β)=A(α)+A(β)以及A(kα)=kA(α)就够了。”
两个概念性的问题都流畅的回答了出来,这让周海更感兴趣,也引起了他更深的好奇,于是直接出了道题目。
“那现在有两个可交换的算子A,B他们的谱半径r(A),r(B),如何证明巴拿赫空间上的可换有界线性算子谱半径满足r(A+B)≤r(A)+r(B)。”
这是前几天他写给他带的研究生泛函分析课程中的题目之一,他就不信眼前这名学生还能顺利的解答出来。
徐川想了想,道:“谱半径与元素所在的巴拿赫子代数无关,所以只需考虑A,B生成的交换Banach子代数,运用Gelfand(盖尔范德定理)进行表示就可以解出来了。”
说着,徐川将小测试的稿纸翻了个面,拾起笔纸在空白区域写下。
“考虑由A,B,I生成的巴拿赫代数,我们有A是交换的,于是得:
σ(A)={τ(A):τ∈Ω(A)},σ(B)={τ(B):τ∈Ω(A)}
......
⇒r(A+B)=sup{τ(A+B):τ∈Ω(A)≤r(A)+r(B)。
其中Ω(A)是特征的集合。”
看着徐川流畅的将答案写出来,周海愣了半响,才道:“不错,很扎实的功底。”
有界线性算子谱半径都能不加思考的直接计算出来,这功底何止扎实,怕是大部分的研究生都没这么扎实的功底。
要知道泛函分析这门课程别说是在本科了,就是在研究生数学中都是较难的一门课程。
在数学专业流传着这样一句俗语:实变函数学十遍,泛函分析心犯寒。
因此泛函分析也被称为数学中的量子力学,普通的大学生想要学懂这门课程都很难,更别提自如的运用了。
前些年某师范大学数学系曾经开设过实变函数选修课程,结果全班没有一个及格的。HTΤps://Wwω.㈠三㈧tXt.Νêt/
可见这门课程的难度。
周海现在是真的羡慕陈正平了,收了个好学生啊,物理上的成就他不清楚,但数学能力绝对不差。
这样的学生,怎么就学物理去了呢?来学数学多好。
.......