返回

我的科学时代

首页
关灯
护眼
字体:
第九十二章 微积分的故事!
上一章 目录 下一章
『章节错误,点此报送』
  图形的证明技巧并不一样,极为繁琐,这个时期数学界出现‘用矩形来逼近原图形’,思想与穷竭法一致,且更加简单,但矩形求解存在一个问题,那就是失去了严谨性,这是一个非常严重的情况。”

  严谨是数学的灵魂。

  失去简单性,数学失去很多愚笨者。

  失去严谨,数学将会失去一切。

  如果一个定理,一个公式,一个数学常数失去了严谨性,那意味着整个数学大厦的崩塌。

  余华全神贯注聆听,关于华罗庚讲解的重点,尽数记入脑海之中,理解程度非常迅速。

  “牛顿和莱布尼茨对于矩形求解存在的问题非常重视,经过这两位数学家的不懈研究,牛顿和莱布尼茨意外发现了一个关键性东西,也就是微积分最基本和最重要的核心思想,那就是微分与积分之间的互逆运算,用数学公式表达为微积分基本定理。”

  华罗庚面容严肃,在黑板上写下了微积分基本定理:“而在此前,微分和积分,还是两个单独学科,微分求导数,积分求面积,互不相干,在牛顿和莱布尼茨的作用下,微积分完整体系建立。”谷ΗTtPs://wωω.1㈢⑧Tχt.NΕΤ/

  微分与积分之间的互逆运算。

  这是微积分的核心,至此,人类文明发展史上极为重要的微积分诞生,微积分基本定理又被称为牛顿——莱布尼茨公式。

  真是天才……

  余华聆听了微积分诞生的历史进程,心中微微感叹,将两个单独的学科联系在一起,并且敏锐发现微分和积分之间的互逆运算,不愧是历史上两位最顶尖的大牛。

  互逆运算是什么概念?

  简单而言,那就是求面积的问题,可以转变为求导数,求导数的问题转变为求面积,互相变换。

  如果积分之路走不通,那就从低维度研究转变为高维度研究,用微分解决问题。

  如果微分之路走不通,那就从高维度研究转变为低维度研究,用积分解决问题。

  此外,还可逆向积分
第九十二章 微积分的故事!(2/3).继续阅读
《 加入书签,方便阅读 》
上一章 目录 下一章